The Mystery of the Missing Tennis Kit Wimbledon Maths Mystery Game m首

At this year's prestigious world tennis championships, the players are all ready to challenge for the famous trophy. The crowds have gathered, the players have trained and the judges are prepared. However, as the players approach their changing rooms, they are met by something shocking - their kits have gone missing! Without their kits, the players cannot take part in the tournament. Hurriedly, all of the players begin searching the venue.

Can you solve the problems and reveal which player discovers the whereabouts of the missing kits?

twink
visit twinkl.com

The Mystery of the Missing Tennis Kit

Player	Gender	Continent	Age	Kit Colour	Tennis Skill
Anna Avraham	Female	Asia	24	Red	Serve
Bailey Brown	Male	Europe	22	Green	Volley
Chow Chu	Female	Asia	20	White	Slice
Daniel Diaz	Male	South America	21	Blue	Speed
Elif Earl	Female	Australasia	27	Purple	Backhand
Felix Falade	Male	Africa	31	Black	Slice
George Gonzales	Male	North America	35	White	Serve
Harnam Hafeez	Female	Australasia	25	Green	Volley
India Ings	Female	Europe	30	Purple	Serve
Joshua Jelani	Male	Africa	21	White	Slice
Kuljeet Kimura	Female	Asia	23	Green	Volley
Li Lopez	Male	South America	24	Black	Speed
Matt Martin	Male	Australasia	34	Blue	Backhand
Nikita Naylor	Female	North America	31	Black	Slice
Odetta Otto	Female	Europe	30	Green	Serve
Preet Patel	Male	Asia	20	Purple	Volley
Queenie Quarrie	Female	Australasia	19	Blue	Backhand
Rehan Romero	Male	South America	23	White	Serve
Sophie Selassie	Female	Africa	22	Black	Speed
Thierry Toussaint	Male	Europe	32	Purple	Volley
Violet Vera	Female	North America	27	Blue	Speed
Wen Wu	Female	Asia	24	Black	Slice

Clue 1: Perimeter of Rectilinear Shapes

Calculate the perimeter of each rectilinear shape. Remember to calculate the length of the sides that are missing!

The solution that occurs the most will reveal a clue about who finds the tennis kits.

perimeter $=$ \qquad perimeter $=$ \qquad perimeter $=$ \qquad
perimeter = \qquad

perimeter $=$ \qquad perimeter $=$ \qquad

perimeter $=$ \qquad

$\mathbf{2 4 c m}$	$\mathbf{2 8 c m}$	$\mathbf{3 2 c m}$
The player doesn't come	The player doesn't come	The player doesn't come
from South America.	from North America.	from Africa.

Clue: The player who finds the kits doesn't come from \qquad .

Clue 2: Equivalent Measures

Find a path through the maze by following the correct equivalent measures. You can only move horizontally or vertically through the maze.

The path will reveal a clue about the special skill of the player who finds the kits.

Şx	$1.09 \mathrm{l}=1090 \mathrm{ml}$	$6.37 \mathrm{~km}=6370 \mathrm{~m}$	$56 \mathrm{~g}=0.056 \mathrm{~kg}$	$12 \mathrm{~mm}=0.12 \mathrm{~cm}$
$4.7 \mathrm{~kg}=4700 \mathrm{~g}$	$6 \mathrm{~mm}=0.6 \mathrm{~cm}$	$334 \mathrm{ml}=3.34 \mathrm{l}$	$509 \mathrm{~cm}=5.09 \mathrm{~m}$	$578 \mathrm{~m}=0.578 \mathrm{~km}$
$2.09 \mathrm{~km}=2090 \mathrm{~m}$	$12.6 \mathrm{~m}=126 \mathrm{~cm}$	$670 \mathrm{~mm}=0.67 \mathrm{~m}$	$0.7 \mathrm{~kg}=70 \mathrm{~g}$	$5.06 \mathrm{l}=5060 \mathrm{ml}$
$2.34 \mathrm{~m}=234 \mathrm{~mm}$	$45 \mathrm{ml}=0.045 \mathrm{l}$	$930 \mathrm{~g}=0.93 \mathrm{~kg}$	$1600 \mathrm{~m}=1.6 \mathrm{~km}$	$45 \mathrm{~m}=4500 \mathrm{~cm}$
$25 \mathrm{~kg}=25000 \mathrm{~g}$	$34 \mathrm{~cm}=340 \mathrm{~mm}$	$6.32 \mathrm{~km}=632 \mathrm{~m}$	$0.03 \mathrm{~m}=3 \mathrm{~cm}$	$6 \mathrm{ml}=0.06 \mathrm{l}$
$250 \mathrm{ml}=\frac{1}{4} \mathrm{l}$	$39 \mathrm{~cm}=0.39 \mathrm{~mm}$	$\frac{3}{4} \mathrm{~m}=75 \mathrm{~cm}$	$1.75 \mathrm{~kg}=175 \mathrm{~g}$	$890 \mathrm{~m}=0.89 \mathrm{~km}$
The player's special skill is not a serve or volley.	The player's special skill is not a backhand or slice.	The player's special skill is not speed or a slice.	The player's special skill is not a volley or backhand.	The player's special skill is not speed or a serve.

Clue: The special skill of the player who finds the kits is not a \qquad .

Clue 3: Measuring Angles

Measure each angle and match them to the correct answers.
The one remaining answer box will tell you a clue about the player who finds the kits.

$\mathbf{1 2 1}^{\circ}$
The player's kit is
blue or black.

Clue: The player who finds the kits has a \qquad or \qquad kit.

Clue 4: Prime and Composite Numbers

Look at these maths statements and decide whether they are true or false. If it is true, put a tick. If it is false, put a cross.

Count the number of ticks and crosses.
If there are more ticks than crosses, the player who finds the kits is male.
If there are more crosses than ticks, the player who finds the kits is female.

	True $\sqrt{\prime}$	False \times
2 is a prime number.		
23 is the only prime number between 20 and 30.		
15,16 and 17 are all composite numbers.		
The next prime number after 50 is 53.		
There are 3 prime numbers between 1 and 10.		
The prime numbers between 30 and 40 are 31 and 37.		
67 is a composite number.		
The largest prime number less than 100 is 97.		
2 and 3 are the only consecutive prime numbers.		

(Circle the correct answer.)
Clue: The player who finds the kits is male/female.

Clue 5: Shape

In each row, find the statement that is not correct.
The column with the most incorrect statements will tell you the age of the player who finds the kits.

	Every angle in this shape is a right angle.	This shape has six equal sides.	This shape has six lines of symmetry.
	In this shape, opposite sides are equal.	This shape has four right angles.	This is a regular shape.
	This is an octagon.	All the sides in this shape are equal.	This shape has four lines of symmetry.
	This is a trapezium.	This shape has one pair of parallel sides.	This is a regular shape.
	This shape has no lines of symmetry.	All the sides in this shape are equal.	This shape has one right angle.
	This shape has no lines of symmetry.	This shape has five equal sides.	Each angle in this shape is 108°.
	Opposite sides in this shape are parallel.	Opposite angles in this shape are equal.	This shape has two lines of symmetry.
	19-24	25-30	31-35

Clue: The player who finds the kits is aged \qquad .

The player who is responsible for finding the missing kits is \qquad

