

Diving into Mastery Guidance for Educators

Each activity sheet is split into three sections, diving, deeper and deepest, which are represented by the following icons:

These carefully designed activities take your children through a learning journey, initially ensuring they are fluent with the key concept being taught; then applying this to a range of reasoning and problem-solving activities.

These sheets might not necessarily be used in a linear way. Some children might begin at the 'Deeper' section and in fact, others may 'dive straight in' to the 'Deepest' section if they have already mastered the skill and are applying this to show their depth of understanding.

Match each shape to the correct area.

Complete the table.

Count the squares of each colour and add them to find the area of the mosaic.

$$
\text { Blue }=45 \text { squares }
$$

$$
\text { Red }=31 \text { squares }
$$

$$
\text { White }=14 \text { squares }
$$

$$
45+31+14=90 \text { squares }
$$

Write a calculation to find the area of the mosaic.

$$
10 \times 9=90 \text { squares }
$$

Do you agree or disagree with Tom? Explain your answer.

The area of this shape is 16 squares.

Disagree. There are 3 rows of 4 squares, which makes 12 altogether. The area of this shape is 12 squares.

Three children have each calculated the area of this rectilinear shape.
Who is right and who is wrong? Explain how you know.

Tick or

Child	Calculation	Cross	How Do You Know?
Kai	$3 \times 5=15$ $15-1=14$		Kai has written a multiplication calculation to find the area and then subtracted the missing square.
Ellie	$3+3+2+3+3=14$		Ellie has added each column up correctly, but it is not the best method to use. It would be quicker and easier to use Kai's method.
Alex	$5 \times 3=15$		Alex has missed a step. He has multiplied, but has forgotten to subtract the missing square.

Logan has drawn three rectilinear shapes with a total area of 8 squares.
Here is one example he has drawn. Finish off his calculations.

$$
\begin{aligned}
& \text { Area of shape } A=1 \text { square } \\
& \text { Area of shape } B=4 \text { squares } \\
& \text { Area of shape } C=3 \text { squares }
\end{aligned}
$$

Total area $=1+4+3=8$ squares

Sonia has also been drawing three rectilinear shapes with a total area of 8 squares. She has drawn a different shape A and shape B.

How many different ways could she draw shape C?

Shape C must contain 4 squares to make 8 in total. Here are the different shapes Sonia could have drawn.
Were any of your shapes the same but a different way round?

Omar has spilt coffee over his new tablecloth.
How many squares are on the tablecloth altogether?

The tablecloth has 5 rows with 5 squares in each row.
$5 \times 5=25$ squares

Sadie's dog has torn off the bottom of her checked curtain.
What is the smallest possible area of the whole curtain?

What is the largest possible area of the whole curtain if its original length was 7 squares?

$$
3 \times 7=21 \text { squares }
$$

Counting Squares

Dive in by completing your own activity!

